
Python Analyst 
Reference

A
nalyst Reference

Version 20190524



 

 

Page 1 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Contents 
Credits and Formatting Notes ....................................................................................................................... 2 
Python Variable Types .................................................................................................................................. 2 
Mathematical and Logic Operators .............................................................................................................. 3 
Python 2/3 Compatibility Imports ................................................................................................................ 5 
Format Strings ............................................................................................................................................... 5 
String .format() Method ................................................................................................................................ 6 
Built-In format() function .............................................................................................................................. 6 
Python 2’s byte strings vs. Python 3 UTF-8 strings ....................................................................................... 7 
String Methods.............................................................................................................................................. 8 
Slicing Strings ................................................................................................................................................ 9 
codecs Module .............................................................................................................................................. 9 
Lists ............................................................................................................................................................. 10 
List Comprehension .................................................................................................................................... 11 
Lambda functions ........................................................................................................................................ 12 
for and while Loops ..................................................................................................................................... 13 
Tuples .......................................................................................................................................................... 13 
Dictionaries ................................................................................................................................................. 14 
Python Debugger ........................................................................................................................................ 16 
Ternary Operator ........................................................................................................................................ 16 
File Operations ............................................................................................................................................ 17 
The os Module for File Operations ............................................................................................................. 18 
Python’s gzip and zlib Modules ................................................................................................................... 18 
Regular Expressions .................................................................................................................................... 19 
Sets .............................................................................................................................................................. 21 
Scapy ........................................................................................................................................................... 22 
struct Module .............................................................................................................................................. 23 
PIL Module .................................................................................................................................................. 24 
sqlite3 Module ............................................................................................................................................ 25 
python-registry Module .............................................................................................................................. 26 
Generators .................................................................................................................................................. 27 
requests Module ......................................................................................................................................... 27 
socket Module ............................................................................................................................................ 28 
try/except/else/finally Blocks ..................................................................................................................... 29 
subprocess Module ..................................................................................................................................... 30 
select Module ............................................................................................................................................. 30 
 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 2 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Credits and Formatting Notes 
This document is extrapolated or quoted from Mark Baggett’s SEC573: Automating Information Security 

with Python course offered by SANS.  All information is used with the author’s permission.  This 

document was originally designed to provide a quick reference to students in that course but may also 

serve as a useful guide to others writing Python code that is both backward compatible with Python 2 

and forward compatible with Python 3.  

 

Throughout this document, examples will be provided using a Python interactive shell.  These examples 

will begin with the Python prompt >>> and the output will follow on the next line or in some cases to the 

right on the same line.  Code examples are listed in italics. Items indicating the type of information 

expected in a command are listed between <> such as print(<thing to print>).  

Python Variable Types 
Name Example Notes 

Integers (int)  1 Whole Number. Casting a float to an int will do a 
floor operation, not round. To round, use 
round() function first, e.g. int(round(100.9)) 
produces 101 . 
 
The int() function can take a string value and 
then a base, so int(“11000101”,2) would be 197 
and int(‘0xc5’,16) would also be 197 

Longs (long)  Integer larger than CPU word size of 32 or 64 bit 

Floats (float) 5.42 Real numbers 

Strings (str) “A” or ‘A’ or “””A”””  

List (list)    [“this”, “is”, “a”, “list”] Support a rich set of methods for manipulation, 
see the Lists section of this document.   

Tuples (tuple) (“Here’s”, “a”, “tuple”) Lighter weight than lists since they don’t support 
as many menthods. 

Dictionary (dict) {“Key1”:”Value1”, 
”Key2”:”Value2”} 

Very fast retrieval based on the location of each 
key in memory.  

Hexadecimal (hex) 0xff4d Hex and bin are stored as int’s or strings but can 
be displayed as hex or bin by casting to hex or 
bin. See int notes for converting binary or hex 
string to int. 

Binary (bin) 0b11010001 Hex and bin are stored as int’s or strings but can 
be displayed as hex or bin by casting to hex or 
bin. See int notes for converting binary or hex 
string to int. 

 

 

https://www.sans.org/course/automating-information-security-with-python
https://www.sans.org/course/automating-information-security-with-python
https://www.sans.org/course/automating-information-security-with-python
https://www.sans.org/


 

 

Page 3 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Mathematical and Logic Operators 

Mathematical Operators, when x = 5 
Operation Example Result in x 

Addition x = x + 5 10 

Subtraction x = x - 10 -5 

Multiplication x = x * 5 25 

Division (Python 3) x = x  / 2 2.5 

Division (Python 2) x = x  / 2 2 

Floor  x = x // 2 2 

Modulo x = x % 2 1 

Exponent x = x ** 2 25 

 

In Python 2, if either dividend or divisor are floats, the result is a float, but if both are integers, the result 

will be an integer.  To produce an integer result, Python 2 does a floor operation. In Python 3, even if 

both divisor and dividend are integers, the division result will be a float.  To import Python 3 division into 

Python 2 use from __future__ import division 

Floats are an approximation, so you need to specify the precision when doing comparisons:  Examples: 

>>> 0.1 + 0.2 == 0.3 

False 

Since the precision is not specified in the example above, Python attempts to carry the precision out to 

many decimal places, which at some point become non-zero since floats are an approximation.  This 

makes the comparison not yield the expected result.  Use format or round to define the precision: 

>>> format(0.1 + 0.2, '3.1f') == format(0.3, '3.1f') 

True 

>>> round (0.1 + 0.2, 3) == round(0.3, 3) 

True 

Mathematical Order of Operations 
• Parenthesis, Exponents, Multiply and Divide, Add and Subtract 

• Boolean AND before OR 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 4 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Logical Operators 
== Equal 

!= Not Equal 

< Less than 

<= Less than or equal 

> Greater than 

>= Greater than or equal 

and And 

or Or 

^ XOR 

 

False and True are keywords and should not be quoted like strings.  False, None, 0 and Empty values are 

False.  Everything else is True. 

>>> bool(1)   is True 

>>> bool([])   is False 

>>> bool({})   is False 

>>> bool(None)   is False 

>>> bool()   is False  

>>> bool(False)   is False 

>>> bool("False")   is True since it is a string with a non-empty value, not the unquoted keyword False. 

 

Python evaluates only enough of an expression to return a value with the same Boolean value as the 

whole expression.  This is called shortcut processing, and behaves as follows: 

OR expression, return 1st item if it is True, else return 2nd item (you can prove an OR in one item) 

AND expression, return 1st item if it is False, else return 2nd item (you can disprove an AND in one item) 

 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 5 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Python 2/3 Compatibility Imports 
from __future__ import division  (this imports the Python 3 division function which returns a real 

number result even if both the divisor and dividend are integers) 

from __future__ import print_function (In Python 2, print was a built-in keyword, but in Python 3 it is a 

function.  Since the keyword is not supported in Python 3, always use the function which must be 

imported into Python 2) 

try: 

    input = raw_input 

except: 

    pass 

Python 2 has two functions that can accept input, input() and raw_input().  raw_input() always returns a 

string  and is the safer one to use.  input() in Python 2 evaluates the input before returning it, which can  

allow string injection attacks.  In Python 3, the input() function is actually the same as raw_input() in 

Python 2 and Python 3 does not have the dangerous input() function at all. 

 

Format Strings 
(“Some String”) % (variable1, variable2) 

String Meaning 

%d Integer decimal 

%10d Integer decimal, 10 digits wide 

%010d Integer decimal, 10 digits wide, leading zeros 

%x Hex in lowercase 

%X Hex in uppercase 

%f Floating-point decimal (around six characters 
after the decimal by default) 

%6.2f Floating-point decimal, 6 wide (in total) with 2 
after decimal. Note that the decimal point counts 
as one of the 6 characters, so it will be ###.## for 
a total of 6 characters, 2 after the decimal point. 
The result is rounded, not truncated. 

%s String 

%% Escapes the percent sign to print a single % 

 

Examples:  

print(“I’d like %d %ss” % (5, ‘parrot’)) produces “I’d like 5 parrots” 

newstring = (“I’m %d%% sure”) % (100) produces “I’m 100% sure” and assigns it to newstring 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 6 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

String .format() Method 
Syntax in the string: {<Argument number>:<fill character><Alignment><Length><type>} 

Alignment options:  

• < Left Align 

• ^ Center 

• > Right Align 

Length  

• Can be a single number or include a decimal point when a float is used to show the number of 

places after the decimal point (rounded, not truncated). 

• Example print(“There are {0:6.2f} percent”.format(44.365)) produces There are  44.37 percent 

Type Options 

• X for uppercase hexadecimal 

• x for lowercase hexadecimal 

• d for decimal 

• f for float 

• leave unspecified for string 

Examples: 

>>> "the number is {0:0>10d}".format(22) 

'the number is 0000000022' 

>>> '{0:a>6d} {1:X}'.format(22,22) 

'aaaa22 16' 

>>> """{} Flying {}""".format("Monty Python's","Circus") 

"Monty Python's Flying Circus" 

 

Built-In format() function 
Takes a value and then a string describing how to format the value.  Uses the same notation for the 

string as the Python 3 .format() method (the part after the colon) 

Example: 

>>> format(10.3,"0>8.2f") 

'00010.30' 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 7 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Python 2’s byte strings vs. Python 3 UTF-8 strings 
Python 2 strings are bytes, but Python 3 strings are UTF-8 encoded.  In Python 3, you can convert from 

bytes to strings with the decode() method and from strings to bytes with encode() method.   

Examples: 

In Python 3: 

b’ABC’.decode() produces a UTF-8 encoded string u’ABC’ 

“ABC”.encode() produces a byte array of b’ABC’ 

 

In Python 3 interactive shell: 

>>> b'ABC'.decode() 

'ABC' 

>>> "ABC".encode() 

b'ABC' 

 

also note: 

>>> b'ABC'.encode() 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

AttributeError: 'bytes' object has no attribute 'encode' 

 

In Python 2.7 

In Python 2.7 interactive shell: 

>>> "test".encode() 

'test' 

>>> "test".decode() 

u'test' 

>>> "test" 

'test' 

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 8 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

String Methods 
If x = “pyWars rocks!” 

Method Syntax Result 

Uppercase x.upper() PYWARS ROCKS! 

Lowercase x.lower() pywars rocks! 

Title Case x.title() Pywars Rocks! 

Replace Substring (all occurrences) x.replace(‘cks’,’x’) pyWars rox! 

Is substring in x? (Case sensitive) “War” in x True  

 “war” in x False 

Display a list of the split string 
(original string remains unchanged) 

x.split() [‘pyWars’,’rocks!’] 

 x.split('r') ['PyWa', 's ', 'ocks!'] 

Count substrings x.count(‘r’) 2 

Find first occurrence of substring x.find(‘W’) 2 

Length function (not a method) len(x) 13 

Join “,”.join([“Make”,”a”,”csv”]) Takes a list and joins the items 
into a string, separated by the 
string provided at the beginning 

Strip leading and trailing whitespace .strip() pyWars rocks! 

 

Note that Title Case capitalizes the first letter of each word, regardless of length or significance. 

Remember, strings are immutable, so these methods create a new string rather than modifying the 

original. 

Note that the substring and main string must both be encoded in the same way (bytes or UTF-8). 

Python 3 example: 

>>> a = "Nasty big pointy teeth" 

>>> a.replace('t','*') 

'Nas*y big poin*y *ee*h' 

But note that if the substring type is bytes when the Python 3 string is UTF-8: 

>>> a.replace(b'e','*') 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

TypeError: replace() argument 1 must be str, not bytes 

 

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 9 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Slicing Strings 
String[start (beginning at zero):end (up to but not including):step] 

If x = “Python rocks” 

Expression Result 

x[0] P 

x[2] t 

x[0:3]  or  x[:3] Pyt 

x[0:-1]  or  x[:-1] Python rock 

x[3:] hon rocks 

x[0::2]  or   x[::2] Pto ok 

x[::-1] Skcor nohtyP 

x[-1]+x[4]+x[7]*2+x[1] sorry 

x[:6][::-1]      or      x[5::-1] nohtyP 

 

codecs Module 
To use the codecs module, you must first:   import codecs 

codecs.encode(object, <codec to be used passed as a string>) 

Common Codecs 
Codec Description 

bz2 Bzip2 encoding/decoding, requires bytes-like object 

rot13 Rotates letters 13 ASCII places 

base64 Base64 encodes/decodes bytes-like object (not UTF-8 strings) 

zip Creates a compressed Zip version, requires bytes-like object 

hex Produces a byte string of hex characters from a bytes-like object 

utf-16  2-byte (16-bit) Unicode  

 

Examples if x = “Python rocks” and using Python 2 (note: Python 3 strings are not bytes-like objects): 

>>> codecs.encode(x,"rot13") 

'Clguba ebpxf' 

>>> codecs.encode(x,"utf-16") 

b'\xff\xfeP\x00y\x00t\x00h\x00o\x00n\x00 \x00r\x00o\x00c\x00k\x00s\x00' 

>>> codecs.encode(x,"base64") 

'UHl0aG9uIHJvY2tz\n' 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 10 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Lists 
List Method Description 

.append(value) Add an object to end of the list 

.insert(position, value) Insert the value at the given position, other items will shift right, position 
is a positive or negative number.  The change is made to the list, so the 
function just returns None. 

.remove(value) Removes the first matching item by its value. The change is made to the 
list, so the function just returns None. 

.sort(key=…, reverse=…) Sort the elements of the list by changing the actual list’s order.  Can 
provide a key function to use for the sort. Both key and reverse are 
optional (so .sort(reverse=True) would sort the list backwards according 
to the default sort key (which is ASCII values). The change is made to the 
list, so the function just returns None. 

.count(value) Count number of occurrences of an item in the list.  Entire list entry must 
match the provided value (does not look for substrings within items).  

.index(value) Look up where a value is in the list 

.reverse() Reorders the list, in reverse order.  Changes the list itself, does not just 
display it backwards. The change is made to the list, so the function just 
returns None. 

In addition to the list methods above, there are other useful functions that work on lists: 

Function Description 

del list[index] Delete an item by index number (del is a keyword, not a list method) 

Sorted([]) Function that will display the list items in a sorted order but not change 
the list itself.  Accepts an optional key=function() to produce an element 
on which to sort, e.g. sorted(customer_list, key=lowercase)  You can 
optionally pass reverse=True as an argument to reverse the sort.  

‘a’ in list Looks for any items that match ‘a’ in the list and return True if present or 
false if not.  Value being searched must match the whole list item, does 
not search substrings.  

sum([]) Provides to sum of a list that contains only numbers (int or float).  
Traceback if contains strings, tuples, other lists, etc. 

zip([],[]) Creates a new list of tuples from two or more lists.  The first item from 
each list are placed in a tuple at in dex 0, the second items from each list 
are placed in a tuple at index 1, and so on.  Stops once one list is 
exhausted.  

map(function,[]) Run the specified function on each item in a list (or any iterable).  Note 
that you use the name of the function without the parentheses.  If two 
lists are provided, the specified function becomes a custom zipper.  The 
result of map is a map object.  You can use list(map(function,[])) to have 
it return a list with the results.  

enumerate([]) Returns an enumerate object of tuples consisting of each list’s items 
index and value.  An example of use is for index,value in 
enumerate(some_liist) where each index would correspond to its 
associated value as the list is walked.  To create a list of tuples with index 
and value use list(enumerate(some_list)) 

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 11 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

The default action when you copy a list is that it creates a pointer to the list rather than recreates a new 

list.  So if a list called list1 exists,  list2 = list1 would make list2 a pointer to the same list, and changes to 

list1 would also result in changes to list2.  

 

To copy the list items into a new list, use list2 =list(list1) 

To copy a list of lists, use the deepcopy() function from the copy module: 

Example: copy_of_list_of_lists = copy.deepcopy(list_of_lists) 

 

Math operators work on lists, as does slicing.  If   a = [1,2] and b = [3,4] 

c = a + b would set c to a new list [1, 2, 3, 4] and changes to a or b would not affect c.  

d = b * 2 would set d to a new list [3, 4, 3, 4] 

and  c[1:3] would be [2, 3]  (same rules apply as with strings, with negative numbers and stepping) 

 

List Comprehension 
Newlist = [<expression> for <iterator> in <list> <filter>] 

Example: 

a = [ x+1 for x in some_list if x < 6] 

Note that in Python 2, the variables declared inside a list comprehension do not get their own scope, so 

if there is a local, global or built-in variable with the same name it will overwrite its values.  In Python 3, 

the variable declared in a list comprehension gets its own scope.  

Python 2 example: 

>>> x = 3 

>>> newlist = [x for x in range(10) if x<4] 

>>> newlist 

[0, 1, 2, 3] 

>>> x 

9 

If there is not a variable with that name already declared, it declares it with a persistent scope. 

>>> newlist = [var for var in range(10) if var<4] 

>>> newlist 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 12 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

[0, 1, 2, 3] 

>>> var 

9 

Python 3 example: 

But with Python 3, the declared variable’s scope is just the list comprehension: 

>>> newlist = [var for var in range(10) if var<4] 

>>> newlist 

[0, 1, 2, 3] 

>>> var 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

NameError: name 'var' is not defined 

 

Lambda functions 
A small function, often used as a key or with map().   

Syntax is  

optional_function_name = lambda <parameters>: <return expression> 

Examples: 

list(map(lambda x,y:int(x) + int(y), [1,2,'3'], [4,5,6])) 

sorted(name_list, key=lambda x: (x.split()[1]+x.split()[0]).lower()) 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 13 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

for and while Loops 

for loops examples 
for x in list: 

for x in range(100): 

for x in range(<start>, <stop>, <step>):  (starts at start, stop is up to but not including the number 

provided, step is positive or negative as with slicing) 

for index, value in enumerate(list): 

while loops 
• while loops can go on forever, whereas for loops have a defined end.   

• while loops can have an else statement, that occurs only once when the test condition evaluates 

to False. If a break ends the loops, the else is not performed. 

break and continue 
• A break causes a for or while loop to exit the entire loop immediately, skipping any while loop 

else statement, and continue on to the next code after the loop.  A continue causes the loop to 

end the current iteration and start the next iteration.  

 

Tuples 
• Tuples are immutable 

• Can be declared with parentheses around the list, or just as comma separate values without 

parentheses. 

• Can access individual elements by their index, e.g. tuple[2]  

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 14 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Dictionaries 
Dictionary method Description 

.get(key, <value if not found>) You provide the key, and it returns the value.  Optionally, you can 
also provide a value that will be returned if the key specified is not 
found. You can also request a value by the key as if it were a list, i.e. 
dict[key] but if the key does not exist, this method causes a 
Traceback.  Get() on the other hand just returns None if the key does 
not exist and no optional value to return is provided.  

.copy() Like lists, assigning a dictionary to a variable creates a link to the 
dictionary, not a new dictionary.  To create a copy, you can cast the 
dictionary to a dict() like with lists, e.g. b = dict(a) or you can call the 
.copy() method, e.g. b = a.copy() 

.keys() Returns a list (or view in Python 3) of the keys (ordered based on the 
memory location of the key prior to Python 3.6 and in the order you 
put them in in 3.6 and later) 

.values() Returns a list (or view in Python 3) of the values (ordered based on 
the memory location of the key prior to Python 3.6 and in the order 
you put them in in 3.6 and later) 

.items() Returns a list (or view in Python 3) of the tuples containing 
(key,value).  Items are ordered based on the memory location of the 
key prior to Python 3.6 and in the order you put them in in 3.6 and 
later. 

 

In Python 3, .keys(), .values() and .items() do not return lists but instead return a View object pointing to 

the dictionary.  A view object is iterable but it cannot be sliced or use any list methods.   A view is more 

like a pointer in that if you assign a view to a variable, the elements of the dictionary will update as the 

dictionary updates.  

For a dictionary named dict: 

• <key> in dict syntax will search through the keys of the dictionary for a key and return True if 

present or False if not.   

• <value> in dict.values() will do the same for values.   

• for x in dict iterates through the keys (the same as for x in dict.keys() would)  

• There is no efficient way to look up a key based on the value, but looking up a value based on 

key is very fast.  

• dict[<key>] = <value> syntax will add a new key, value pair (overwriting the old value at that key 

if it previously existed) 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 15 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Specialized Dictionaries 
Special Dictionaries in collections Module  Description 

defaultdict(default_function) A dictionary that will create any key that you 
query and set it to the value returned by the 
default_function. You can access dict[key] safely 
for any value since nonexistent keys 
automatically call the default_function to have a 
value set. 

Counter Counter automatically counts the number of 
times a key is set.  It is a customized defaultdict, 
similar to defaultdict(lambda:0) but it also adds 
additional methods.  

 .most_common()  counter method lists the keys 
with the greatest count first (takes an optional 
value to set the number of keys to display or else 
it displays all in frequency order).   

 .update([]) method takes a list of keys and 
increments the count for each 

 .subtract([]) method takes a list of keys and 
decrements the count for each 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 16 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Python Debugger 
Three ways to start: 

• import pdb; pdb.set_trace()  at the point where you want a breakpoint 

• python -m pdb <script.py> 

• python -i <script.py> then after a crash type import pdb; pdb.pm() 

PDB Command Meaning 

? Print help 

n Stop at next line in current function, stepping over any function calls 

s Step into functions and execute the next line 

c Continue to next break point 

l start,end List source code from start to end line.  If lines not specified, it prints 11 lines 
around current line or continues from last listing 

p <expression>  Print the value of an expression or variable 

r Finish the current subroutine and return to the calling function 

break <options> Create, list or modify breakpoints in the program.  break plus a line number or 
function name sets a break point.  break by itself lists break points.  

clear 
<break_number> 

Clears a breakpoint identified by the supplied breakpoint number (breakpoint 
numbers and their associated line number are displayed when you just type 
break).  enable or disable can also be used on existing breakpoint numbers.  

ignore 
<break_num> <# 
of times to 
ignore> 

Ignore a breakpoint for a specified number of iterations.  Example ignore 1 3 
would ignore breakpoint 1 for the next 3 occurences 

condition 
<break_num> 
<logic test> 

Set a conditional breakpoint by providing the breakpoint number and the logic 
test.  If the test is false, the line will proceed but if the test is true, the line will be 
a break point.  Example condition 1 i==2 makes the line proceed unless i is equal 
to 2, in which case execution breaks at that line.  

commands 
<break_num> 

Allows you to enter a (com) prompt and specify pdg commands that will execute 
when the break occurs (common examples are p, args, end and cont).  

display 
<expression> 

Display variables as they change every time a breakpoint in reached (Python 3 
only) 

<ENTER> Execute the last command again 

 

Ternary Operator 
Provides a shortcut way to do a conditional assignment.  Example: 

x = 10 if y==5 else 11 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 17 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

File Operations 
Create a file object with the built-in open() function using:  

file_handle = open(<complete file path as string>, <mode>) 

OR 

with open(<complete file path as string>, <mode>) as file_handle: 

#Then a code block goes here that will use the file_handle.  Any I/O errors encountered will be 

handled automatically and the file closes automatically once this code block ends. 

 

open() can optionally take an encoding= argument if a specific encoding is used in the file (or if you want 

to read binary data as a string and encode it as Latin1 to avoid corruption).  Example: 

file_handle = open(“/bin/bash”, encoding=”latin-1”) 

Where the path to the file is absolute or relative, and the mode is one of the following: 

Mode (passed as a string) Meaning  

‘r’ Read only - This is the default mode if one is not specified. 

‘w’ Overwrite (truncate) the file. If the file does not exist it will be created.  If 
it does exist it overwrites the original.  

‘a’ Append - add data to the end. If the file does not exist it will be created. 
To change data in the middle, first read the contents in, make changes, 
and then write the file back.  

‘b’ Windows Only - Add a ‘b’ to the mode for binary files.  If not, Windows 
will attempt to “fix” end of line markers which may corrupt binary data. 
Example: ‘rb’ 

‘t’ 
 

 

Open in text mode (the default) which interprets unicoded strings and \n 
or \r\n as end of line. Example: ‘rt’ 

‘+’ Add a ‘+’ to the mode to allow simultaneous reading and writing. ‘w+’ or 
‘r+’ allow for reading and overwriting.  ‘a+’ allows for reading and 
appending. 

 

File Object Methods 

Method Description 

.seek() Sets the file pointer position 

.tell() Returns the file pointer’s current position 

.read() Read the contents of a file as a string 

.readlines() Read the contents of a file as a list of lines 

.readline() Reads the next line of the file as a string 

.write() Writes a string to a file 

.writelines() Iterates over an object that produces strings and writes each to a file. 

.close() Closes the file 

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 18 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Iterating through a file: 

filehandle = open(‘filename’,’r’) 

for oneline in filehandle: 

    print(oneline, end=””) 

filehandle.close() 

The os Module for File Operations 
• You can use the os module to check if a file exists: 

>>> import os 

>>> os.path.exists("/bin/bash") 

True 

Note that False will be returned if either the file does not exist or the process is running as a user that 

does not have access to the file.  

• You can list the contents of a single directory (not recursively) with os.listdir(“path/to/dir”) 

• You can use os.walk(“starting path”) to recursively list files. Each iteration returns a tuple with 

three elements: 

o A string containing the current directory 

o A list of the directories in that directory 

o A list of the files in that directory 

• Example:  for currentdir, list_of_dirs, list_of_files in os.walk(“/”): #Some code block 

 

Python’s gzip and zlib Modules 
Python has default modules gzip and zlib to deal with gzipped files.   

gzip.open() will open compressed files.  In Python 3, it defaults to ‘rb’ mode but log files should be 

opened in text mode (‘rt’).  gzip objects support the .read(), .readlines(), .write(), .writelines(), .seek(),  

and .tell() methods the same as the built-in open() function does.  Example: the following will read the 

first 40 characters of the gzipped log file: 

file_handle = gzip.open(“/var/log/syslog.2.gz”, “rt”) 

first40 = file_handle.read(40)  

 

zlib.decompress() will work on bytes, not files 

zlib.compress() likewise works on bytes, not files 

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 19 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Regular Expressions 
Python’s re module implements regular expressions.  It contains the following functions: 

Function Description 

match() Start at the beginning of data searching for pattern.  Returns an object 
that stores the data.  The object returned supports the .group() method 
to access capture group data.  .group() returns the whole result, 
regardless of defined capture groups.  .group(1) returns just the first 
capture group (numbering starts at 1).  .group(“name”) will return a 
capture group with explicit group name of “name”).  

search() Match pattern anywhere in the data.  Returns an object that stores the 
data. The object returned supports the .group() method to access capture 
group data.  .group() returns the whole result, regardless of defined 
capture groups.  .group(1) returns just the first capture group (numbering 
starts at 1).  .group(“name”) will return a capture group with explicit 
group name of “name”). 

findall(’<expression’, 
data,[optional_modifier]) 

Find all occurrences of the expression in the data. Returns a list containing 
each match as an item.  The expression can be a regular string, a raw 
string (denoted by an r before the string) or a byte string (denoted by a b 
before the string).  If desired, a third argument can be provided to modify 
the behavior.  Examples: 

 re.IGNORECASE will make the search case insensitive. Can alternatively 
just add (?i) to the beginning of the regular expression string. 

 re.MULTILINE will make ^ and $ anchors apply to each new line character, 
not just the first line.   Can alternatively just add (?m) to the beginning of 
the regular expression string.  

 Re.DOTALL will make . match newlines also, since normally the . does not 
match newline character.  This should always be used for searches within 
binary data. Can alternatively just add (?s) to the beginning of the regular 
expression string. 

 

Python regular expression special characters: 

Character Meaning 

. Wildcard for any character 

? Previous character is optional 

+ One of more of the previous character (greedy, match as much as 
possible) 

+? One or more of the previous character (stop as soon as the match is 
made) 

* Zero or more of the previous character (greedy, match as much as 
possible) 

*? Zero or more of the previous character (stop as soon as the match is 
made) 

{x] Match exactly x copies of the previous character 

{x:y} Match between x and y copies of the previous character 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 20 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Character Meaning 

\w Any text character (a-z, A-Z, 0-9, and _) 

\W Opposite of \w (only non-text characters) 

\d Matches digits (0-9) 

\D Opposite of \d 

\s Matches any white-space character (space, tab, newlines) 

\S Opposite of \s 

[set of chars] Define your own set of characters to match against one character.  If 
the character is in the set you define, it matches. 

[^set of char] Caret in first position negates the set, so matches anything except 
was is listed. 

\b Border of a word character, the transition of \w to a \W or vice 
versa.  

^ Match must be at the start of the string 

$ Match must be at the end of the string 

\ Escpapes special characters (\. means to search for a literal period) 

| A logical OR, Example a|b matches on an a or b 

(<expression>) Enclosing an expression in parentheses makes it a capture group. 
Only items inside a capture group are returned, but the rest of the 
expression must also match (it simply is not returned in the result). 
Capture groups are numbered beginning a 1, not zero. 

(?P<groupname><expression>) Creates a capture group with an explicit name, rather than the 
automatic numbering. Not that in this case, the first set of brackets 
is a literal syntactic requirement, example:  
>>> a = re.search('(?P<test1>a..)de',"abcdefgabc") 
>>> a.group('test1') 
'abc' 

(?:<expression>) If ?: is placed within a parenthetical group, it indicates that the 
grouping is for ordering only and is not a capture group. Example: to 
capture string dates from 0 to 31, use ‘(?:0[1-9]|[1-2][0-9]|3[0-1])’ 

(?i) Make expression case insensitive.   

(?s) Make . match newlines also, since normally the . does not match 
newline character (always use for searching within binary data) 

(?m) Make ^ and $ anchors apply to each new line character, not just the 
first line (use for Multiline searches) 

(?P<groupname>) Makes a back reference to the capture group named groupname 

\<number> Makes a back reference to the capture group numbered <number> 

 

• Since regular expressions are also python strings, the \ character is interpreted both by the 

Python string and by the regular expression, since it has spelling meaning for both.  To indicate 

that a string is “raw” and should not process the string with the Python string engine by putting 

r at the beginning of the string.  You can also do a b in front of the string to make it a byte string.  

Finally, in Python 3 only, you can do rb at the beginning of the string to denote a raw, byte 

string.  

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 21 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Sets 
Sets are like lists, but each element is unique.  Sets contain immutable objects, so they cannot contain 

lists or dictionaries.  They are denoted with {} like dictionaries, so {1:2} is a dictionary and {1,2} is a set.  

Set Method Description 

.add(<item>) Adds one item 

.update(<list or set>) Add everything from another set or list 

.remove(<item>) Remove a single item from a list 

.difference({set}) Given a second set as an argument, it returns a new set with 
the items in the original set but not in the set provided as an 
argument.  

.difference_update({set}) Same as .difference({set}) but modifies original set instead of 
returning a new set (it removes any items in the second set 
from the original set) 

.union({set}) Adds the original set and the set passed as an argument 
together into a new set 

.issubset({set}) Returns True if all the items in original set are in the set you 
pass to the method as an argument 

.issuperset({set}) Returns True if all the items in the set passed as an argument 
are contained in the original set 

.isdisjoint({set}) Returns true if the original set and the set passed as an 
argument have no items in common 

.intersection({set}) Returns items that are in both sets and puts them in a new set 

.intersection_update({set}) Same as .intersection({set}) but modifies original set instead of 
returning a new set 

.symmetric_difference({set}) Removes the intersection of the two sets and then returns all 
remaining items from both sets into a new set 

.symmetric_difference_update({set}) Same as .symmetric_difference({set}) but modifies original set 
instead of returning a new set 

 

Mathematical Operators with Sets 

Operator Behavior 

^ Symmetric_differnce 

& Intersection 

| Union 

- Difference 

 

Like lists and dictionaries, assigning a set to a variable creates a link to the original set, not a new set.  To 

copy a set, use the set() function: 

b = set(a)  

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 22 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Scapy 
To import scapy, use  

from scapy.all import * 

Scapy Functions 

Function Description 

rdpcap(filename) Reads a pcap file into a scapy.plist.PacketList data structure 

wrpcap(filename, packetlist) Writes a PacketList to a file 

sniff() Used to capture packets and return a PacketList object 

sniff(offline=”file.pcap”) Reads a pcap and returns a PaketList object 

sniff(prn=function_name) prn= argument specifies a callback function that is called for 
each packet returned by sniff.  An example is lfilter, which 
provides the ability to filter packets based on specified criteria 
(sniff has a filter=”BPF” argument as well but it has many OS 
dependencies that are often not met).  

 

scapy.plist.PacketList Object Methods 

Method Description 

.sessions() Follows TCP streams, produces a dictionary with a key of “protocol 
srcip:srcport > dstip:dstport” and a value that is a scapy.plist.PacketList 
with all the associated packets in it. 

 

PacketList objects are lists of packets.  Packet objects have the .haslayer(<layer>) method, which returns 

True if that layer is present in that packet.  Layer names are case sensitive and include Ether, IP, TCP, 

UDP, DNS, and Raw. Layer names are passed not in quotes, e.g. packet_one.haslayer(TCP) 

Each layer has fields and the fields are addressed with a dot notation, for example 

packet_one[TCP].sport for the Source Port in the TCP layer. You can view the fields in any layer with 

ls(<layer>).   If a field name is unique, you can skip stating the layer and access just the field name, such 

as packet_one.load instead of packet_one[Raw].load since the field “load” only exists at the Raw layer. If 

the field name is not unique, scapy will return the first field it encounters with that name. Each packet 

also has a .time attribute that records the epoch time when the packet was captured.  

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 23 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

struct Module 
struct.unpack(<pattern_string>,<byte_data>) converts byte data into other types 

struct.pack(<pattern_string>, <data>) converts int’s and strings into binary data 

the <pattern_string> describes how to pack or unpack the data, as shown in this chart: 

Format Type Standard Size 

x N/A (means to ignore the byte) Length specified before x 

c String of length 1 1 byte 

b Integer -128 to 127 (signed char) 1 byte 

B Integer 0 - 255 (unsigned char) 1 byte 

? Bool 1 byte 

h Integer (short) 2 bytes 

H Integer (unsigned short) 2 bytes 

i Integer (signed) 4 bytes 

I (capital “eye”) Integer (unsigned) 4 bytes 

l (lowercase “L”) Integer (signed long) 4 bytes 

L Integer (unsigned long) 4 bytes 

f Float 4 bytes 

d Float (double) 8 bytes 

s string Length specified before s 

! Interpret data as big endian (used for network 
traffic data) 

 

> Interpret data as big endian  

< Interpret data as little endian  

= Use sys.byteorder to determine endianess  

@ Use sys.byteorder to determine endianess  

 

Examples: 

>>> struct.unpack("BB",b"\xff\x00") 

(255, 0) 

>>> struct.pack('<h', -5) 

b'\xfb\xff'       (Python 3 result)  

'\xfb\xff'         (Python 2 result) 

struct.unpack(“!6s6sH”, data[:14]) to unpack Ethernet header 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 24 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

PIL Module 
Originally called PIL (Python Image Library) but now called pillow; however, the package name pil is still 

used to avoid backward compatibility issues.   

To install and import PIL: 

pip install pil  

from PIL import Image  

 

Using an Image object: 

imagedata=image.open(“picture.jpg”) 

imagedata.show() 

 

To read a picture carved out of a data stream, use BytesIO in Python 3 or StreamIO in Python 2 

Python 3 Example: 

from io import BytesIO 

img = re.findall(r’\xff\xd8.*\xff\xd9’,raw_data, re.DOTALL) [0] 

Image.open(BytesIO(img)).show()  

 

To get a dictionary of EXIF tag integers mapped to their meaning use: 

from PIL.ExifTags import TAGS 

Then use TAGS.get(<integer>) to look up an EXIF tag number and get its string meaning back.  Can 

specify a second, optional argument to TAGS.get() that provides a string to return if the key is not found 

in the dictionary. 

If you point a new variable to a variable holding an Image, it creates a pointer to the original, not a new 

object (like lists).  To create a new image, use: 

copy = Image.Image.copy(original) 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 25 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

PIL.Image methods 
Method Description 

Image.open(<filename>) Open a file and create an Image object (not a method of an 
Image object, but used to instantiate an ImageObject) 

.show() Use default viewe to display the image 

.thumbnail((Width,Height),Method) Reduces the size of the image to a maximum size specified by 
the tuple in the first argument, using the method specified in 
the next argument.  Methods include Image.NEAREST, 
Image.BILINEAR, Image.BICUBIC, Image.ANTIALIAS and others. 
Preserves the image aspect ratio.  Modifies the original image, 
does not produce a new copy. 

.resize((Width,Height),Method) Enlarge or reduce the size of image to the size provided in the 
tuple supplied as first argument, ignoring original aspect ratio.  
Does not modify original image, but returns a copy of it. 

.size   (attribute, not a method) A tuple that provides the size of the image (width,height) 

.crop((left,upper,right,lower)) Returns a cropped copy of the image.  The argument is a tuple 
defining the area to be cropped.  

.rotate(degrees) Returns a copy of the image rotated the specified number of 
degrees, does not alter original image.  

.save() Saves the image to disk 

_getexif() Returns a dictionary describing the metadata about the image.  
The keys are integers designating the tag type as per the EXIF 
standard.  Values are the associated data for that tag. 

 

sqlite3 Module 
To import this module, use:    import sqlite3 

To connect to a database file and access it through a variable named db: 

db = sqlite3.connect(“filename”) 

You can then make SQL queries to the database with the .execute() method as seen here: 

list(db.execute(“select name from sqlite_master where type=’table’;”)) 

.execute() method returns an iterable object that can be converted into a list to view all contents if 

desired or iterated with a for loop. 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 26 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

python-registry Module 
pip install python-registry 

from Registry import Registry 

handle = Registry.Registry(“path/to/file”) to open a registry hive 

regkey = handle.open(“path\to\key”) opens a specific key 

Key Methods 

Method Name Description 

.path() Returns a string with the full path to the key starting with “ROOT\” and 
ending with the name of the key itself 

.value(<value_name>) Returns a single object of type Registry.value  

.values() Returns a list of all the values for the key 

.subkey(<subkey_name>) Returns a single key object for the specified subkey 

.subkeys() Returns a list of all the subkeys 

  

Value objects also have methods 

Method Name Description 

.name() Returns the name of the value 

.value() Returns the value data associated with the value 

.value_type_str() Returns the type, such as REG_DWORD, REG_SZ, REG_BINARY, 
REG_QWORD, REG_NONE, etc. 

 

To retrieve a list of subkey names for a key, 

reg_key = reg_hive.open(“Microsoft\Windows\CurrentVersion”) 

list(map(lambda x:x.name() , reg_key.subkeys() )) 

Registry Date formats 

Format  

REG_BINARY Eight values of 2-bytes each, representing year, 
month, day (a number representing the day of 
the week starting with Sunday), date, hr, min, 
sec, microsecond.  

REG_DWORD Linux timestamp integer recording the number of 
seconds since Epoch. 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 27 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Generators 
Placing a yield statement in a function makes it a generator, which pauses its execution, returns a value, 

and awaits a .__next__() call to resume execution and return the value indicated by the next yield 

statement. 

requests Module 
Import with:   import requests 

Can make get requests: 

webdata = requests.get(“http://www.sans.org”) 

Or post requests: 

formdata = {‘username’:’admin’,’password’:’ninja’} 

webdata = requests.post(“http://www.sans.org”, formdata) 

Both of these return a response object.  Can access several different attributes of response objects: 

response Object Attribute Description 

.content The content of the web response 

.headers The headers returned 

.status_code The HTTP status code integer 

.reason The text description associated with the status code 

 

Alternatively, you can create a session, which is like creating a browser that remembers setting, such as 

User-Agent, and maintains state via cookies 

browser = requests.session() 

browser.headers attribute displays a dictionary with the various header options like Accept-Encoding, 

User-Agent, etc.  These can be changed as desired by simply changing this dictionary. 

You can then call browser.get(<url>) and browser.post(<url>,<postdata>)) to make requests from the 

customized browser object.  The responses will still be request objects just as they were when using 

requests.get(<url>) and requests.post(<url>,<postdata>) 

You can configure a proxy with browser.proxies[<protocol>] = <url>:<port> such as  

browser.proxies[‘http’] = ‘http://127.0.0.1:8080’ 

You can also use browser.cookies attribute to view the request.cookies.RequestCookieJar object, which 

is a special type of dictionary.  Calling browser.cookies.keys() will provide a list of the cookies.  You can 

use browser.cookies[<cookie_name] to view the value of a cookie.   

browser.cookies.clear will clear all cookies.  browser.cookies.clear(domain=<domain_string>) will clear 

cookies for the specified domain. 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 28 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

socket Module 
To import, use:   import socket 

>>> socket.gethostbyname("www.sans.org")  

'45.60.35.34' 

>>> socket.gethostbyaddr("8.8.8.8") 

('google-public-dns-a.google.com', [], ['8.8.8.8']) 

(the above result is a tuple with hostname, list of aliases, and a list of addresses) 

 

To create a socket, use: 

<variable_name> = socket.socket(<IP type>, <Protocol>) 

Where <IP type> is: 

• socket.AF_INET for IPv4 (default if nothing specified) 

• socket.AF_INET6 for IPv6 

And <Protocol> is: 

• socket.SOCK_DGRAM for UDP 

• socket.SOCK_STREAM for TCP (default if nothing specified) 

Example: 

udp_socket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) creates an IPv4, UDP socket 

tcp_socket = socket.socket() creates an IPv4, TCP socket by default 

 

After creating the socket object (TCP or UDP), if the object will be a server, bind it to a port with: 

udp_socket.bind((“10.10.10.10”,9000))   

(the argument is a tuple with a string for the IP and an integer for the port) 

 

To send and receive data to a UDP socket, use .sendto() and .recvfrom() methods 

udp_socket.sendto(“HELLO”,(“10.0.1.1”,3000))  returns number of bytes sent 

udp_socket.recvfrom(<number_of_bytes>)  returns (<data_received>,(<IP_addr>,port))  

 

 

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 29 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

To create an outbound session to a TCP socket use .connect() method 

tcp_socket.connect((<dest_ip>, <dest_port>))   this handles the 3-way handshake  

 

To accept inbound connections to a TCP socket: 

tcp_socket.bind((<ip>,<port>)) 

tcp_socket.listen(<max_num_of_connections>)  (the port will show as listening at this point) 

connection,remote = tcp_socket.accept() 

.accept() will return a connection object and a tuple with the remote IP and port. 

From that point, you can interact through the connection object with .send(), .recv() and .close() 

 

try/except/else/finally Blocks 
try: 

    #block to try 

except <specific_error_name>: 

    #block for that error 

except Exception as e: 

    #block that can include the name of the exception as the variable e 

else: 

    #block to do if there is no exception 

finally: 

    #block to do at the end whether there was an exception or not (usually for clean up) 

 

Try something until it works: 

while True: 

    try: 

        #something to try 

    except: 

        continue  

    else: 

        break 

 

 

  

https://www.sans.org/course/automating-information-security-with-python


 

 

Page 30 of 30 

Extracted from Mark Baggett’s Automating Information Security with Python course.  

Python Analyst Reference 
Version 20190524 

Try various things until one of them works: 

while not done: 

    for thing_to_try in [list_of_options]: 

        try: 

            #try the first thing 

        except: 

            continue 

        else: 

            done = True 

            break 

 

subprocess Module 
Can be used to start a new process, provide it input and capture the output: 

processhandle = subprocess.Popen(“some command”,  

 shell = True, 

 stdout = subprocess.PIPE, 

 stderr = subprocess.PIPE, 

 stdin = subprocess.PIPE) 

results = processhandle.stdout.read() 

errors = processhandle.stderr.read() 

 

Can use processhandle.wait() to cause your program to pause until the subprocess completes.  It returns 

an integer exit code to show the status once the process terminates. However, if the subprocess 

generates a lot of output, the output buffer may fill and cause a hang. 

Instead, you can use processhandle.communicate() which will read the subprocess.PIPE repeatedly until 

the subprocess is finished executing.  It then returns a tuple with two, separate byte strings.  The first 

contains all the stdout and the second contains all the stderr from the subprocess. 

 

select Module 
select.select([list_of_sockets], [list_of_sockets], [list_of_sockets])  

The sockets in the list are each checked.  The first list is checked to see if the sockets have data ready for 

you to receive.  The second list is checked to see if they are ready for you to send data.  The third list 

checks to see if they are in an error condition.  

 

 

https://www.sans.org/course/automating-information-security-with-python

	Table of Contents 

